
Session code:

My Favourite Problem Determination Tricks

Pavel Sustr
IBM Toronto Lab

C6

Nov 6, 2018 14:30 – 15:30 Db2 for Linux, UNIX, Windows

1

@pavel_sustr

Pavel's Bio

Senior Manager and Senior Software Engineer with IBM Db2 LUW development, responsible for multiple core Db2 kernel components. Always
thrilled to work on hard-to-crack puzzles. Expertise in Db2 LUW kernel architecture, configuration and administration, advanced problem
determination, memory architecture, memory leak troubleshooting, and assembly language. Hands-on development experience with buffer
pool management, storage, prefetching, page cleaning, transaction logging, recovery, monitoring, and problem determination. As a member of
the Db2 team, Pavel spent years in Db2 L2/L3 advanced support (over 1,500 resolved cases), then transitioned to Db2 LUW kernel
development. In his past life Pavel was an application developer mostly using C++, SQL, .NET, Oracle, MS-SQL, and Informix on Windows, Linux,
Solaris, and HP-UX.

1

Agenda

• Db2 Kernel and Return Code Anatomy

• Fifty shades of Db2 Trace

• Call-Out Scripts

• Locking/Latching Tricks

• Table Space Map

• Sleep... ☺

2

Db2 Engine Anatomy

3

• Millions of lines of code

• Grouped into components

• Component expertise
• Single : hard
• Multiple : lifetime effort
• Most : Keri ☺

3

Routine Naming Anatomy

sqleCalculateDbHeaps

4

“sql” prefix
(optional)

Component:
“sqle”

Function name:
“Calculate Db Heaps”

- The “sql” prefix. Usually associated with the most mature Db2 components. The “sql” part is not neccesarily referring to the SQL language.
Instead, it has a broader usage scope, as in “SQL engine” = “Db2 Kernel”. Newer components (e.g. CDE) do not use the prefix.

- Component. When the “sql” prefix is present, the prefix becomes part of the component’s name. E.g. “sqle” = “Process Model”, “sqlb” =
“Buffer Pool Services”, etc… For a list of frequent components, see the reference slides at the end of the presentation.

- User (developer) friendly name. Can often be used to guess the purpose of the routine.

Function names are often a good string to search for when it comes to APARs, diagnostic log entries, Db2 trace, etc…

4

Making Sense of Return Codes

• Wikipedia: In computer programming, a return code or an error code
is an enumerated message that corresponds to the status of a specific
software application

• Db2 return codes can be spotted in various places: Db2 diagnostic log,
notification log, traces, command line, CLI logs, JAVA traces

• Most of the time they should be accompanied by a text message
• What if this is not the case?
• What if I want to know more?

5

5

db2diag –rc/db2diag -cfrc

• The db2diag tool can be used to translate a return code to the
corresponding text representation
• db2diag –rc <code> for non-pureScale return codes
• db2diag –cfrc <code> for CF return codes

• The <code> can be any of the following:
• Hex code, e.g.: 0x870F0016

• Decimal code, e.g.: -2029060074

• Mnemonic name, e.g.: SQLO_SHAR

6

6

Example: db2diag –rc

7

$ db2diag -rc 0x870F0016

ZRC class :

Global Processing Error (Class Index: 7)

Component:

SQLO ; oper system services (Component Index: 15)

Reason Code:

22 (0x0016)

Identifer:

SQLO_SHAR

Identifer (without component):

SQLZ_RC_SHAR

Description:

File sharing violation.

The output is a bit shortened for easier viewing. The entire message looks like:

> db2diag -rc SQLO_SHAR

Input ZRC string 'SQLO_SHAR' parsed as 0x870F0016 (-2029060074).

ZRC value to map: 0x870F0016 (-2029060074)

V7 Equivalent ZRC value: 0xFFFFF616 (-2538)

ZRC class :

Global Processing Error (Class Index: 7)

Component:

SQLO ; oper system services (Component Index: 15)

Reason Code:

22 (0x0016)

Identifer:

SQLO_SHAR

Identifer (without component):

SQLZ_RC_SHAR

Description:

File sharing violation.

Associated information:

7

Sqlcode -902

SQL0902C A system error occurred. Subsequent SQL statements cannot be

processed. IBM software support reason code: "".

Number of sqlca tokens : 1

Diaglog message number: 8519

7

Return Code Anatomy

• ZRC class :

Non-Critical Media Error (Class Index: 4)

• Component:

SQLO ; oper system services (Component Index: 15)

• Reason Code:

1 (0x0001)

8

- Return codes are often remapped when the code is leaving a component’s scope and entering another component’s scope (for explanation
on components, see subsequent slides). For example: SQLO_ACCD => SQLZ_RC_ACCD => SQL0970N The system attempted to write to a
read-only file.

- The lowest level error consists of:

1) Class

2) Component

3) Reason code

8

9999

Fifty Shades of Db2 Trace

• Db2 trace typically provides information on:
• Internal functional calls made
• Code path used, i.e. code flow
• Data being manipulated at each point within the function
• Time elapsed in each function, if enabled

However, Db2 trace can also be used to perform other neat tricks!

9
•Db2 traces are invoked by issuing the db2trc command from an operating system command prompt.

•When invoked, trace points within the Db2 source will 'fire' during runtime.

•The firing of each trace point causes information such as the location within the code, error codes, return codes, and certain variables to be

written to a buffer.

•db2trc allows for administration of the facility and parsing and formatting of the trace dump files.

10101010

Trace: Sample Usage

10

<recreate the problem>

db2trc dmp <dmpfile> (skip if tracing into a file, -f, is used)
db2trc off

db2trc flw <dmpfile> <flwfile>

db2trc fmt <dmpfile> <fmtfile>

• Typical Db2 trace invocation (“trace everything”):

• Dump the trace buffer, turn off tracing, and format trace data:

db2trc on –l <buffer_size> -t

• Trace specific components:

db2trc on -l <buffer_size> -t -Madd SQLB –Madd SQLD

db2trc on –l <buffer_size> –apphdl <apphdl> (up to 16 apphandles), OR
db2trc on –l <buffer_size> –appid <applid> (up to 12 application IDs)

• Trace specific applications:

• Trace into a file (“unlimited” buffer):

db2trc on –f <dmpfile> -t

• Verify trace is on:

db2trc inf

-l [bufferSize]

▪ This option specifies the size and behavior of the trace buffer. -l specifies that the last trace records are retained (that is, the first records

are overwritten when the buffer is full). The buffer size can be specified in either bytes or megabytes. To specify the buffer size in

megabytes, add the character M | m to the buffer size. For example, to start db2trc with a 4–megabyte buffer: db2trc on -l 4m The default

and maximum trace buffer sizes vary by platform. The minimum buffer size is 1 MB. The buffer size must be a power of 2.

[-t]

Include timestamps.

Trace: Flow
308986 sqleProcessSCoordRequest entry [eduid 37 eduname db2agent]

310069 | sqlpParallelRecovery entry [eduid 37 eduname db2agent]

<...lots of other calls here...>

316955 | sqlpParallelRecovery exit [rc = SQLB_EMP_MAP_INFO_NOT_FOUND]

317046 sqleProcessSCoordRequest exit

11

- Unique trace ID. Increasing order, trace always starts with 1.
- Db2 function called. Name chosen by Db2 developers, often self-explanatory.
- Specific place in function. Could be “entry”, “exit”, “probe number”, “marker”, …
- Db2 “thread” (EDU) ID and name. Matches the EDU ID and name in db2diag.log.
- Return code. A good string to search for in Db2 APARs.

FLW provides a visual representation of which Db2 routines were called and by whom, their
return code, markers, and probe points. The trace IDs are not sequential (i.e. contain
“holes”) because of context switching, i.e. EDU “A” may own entries 1 and 3, but EDU “B”
running in parallel will own 2 and 4.

EDU is a Db2 term for “thread”. Stands for “Engine Dispatchable Unit”.

11

Trace: Format
316955 exit DB2 UDB recovery manager sqlpParallelRecovery fnc (2.3.94.48.0) pid 14925 tid

46912874998080 cpid 14546 node 0 rc = 0x8402001B =

-2080243685 = SQLB_EMP_MAP_INFO_NOT_FOUND

316956 entry DB2 UDB base sys utilities sqleSubCoordTerm fnc (1.3.5.1051.0) pid 14925 tid

46912874998080 cpid 14546 node 0 eduid 37 eduname

db2agent

12

- Unique trace ID. Matches the ID in FLW.
- Specific place in function. Could be “entry”, “exit”, “probe number”, “marker”, …
- Db2 area, component, and function called. Note the unique “IP address”.
- Process/thread/EDU/Node ID, EDU name. Also could contain timestamp, etc…
- Return code. Same as in FLW.

FMT provides additional detail about individual trace entries. Unlike FLW, the entries are perfectly
sequential and ordered by time. When timestamps are present (db2trc –t), these entries could be used
for performance measurements. Because of the aforementioned context switching, extra attention
needs to be paid to EDU which owns the trace entry of interest.

12

Trace: Flow and Timeline
$ db2trc flw -t trace.dmp trace.flw

34792 13.644484000 | | | sqlbDMSGetOpenInfo entry [eduid 26 eduname db2pfchr]

34795 13.644485000 | | | | SqlbFhdlTbl::getFileHandle entry [eduid 26 eduname db2pfchr]

34797 13.644485000 | | | | | SqlbFhdlTbl::getHashOpts entry [eduid 26 eduname db2pfchr]

34801 13.644486000 | | | | | SqlbFhdlTbl::getHashOpts exit

34803 13.644487000 | | | | | SqlbFhdlTbl::findSlot entry [eduid 26 eduname db2pfchr]

34806 13.644487000 | | | | | SqlbFhdlTbl::findSlot exit

34809 13.644488000 | | | | SqlbFhdlTbl::getFileHandle exit

34811 13.644488000 | | | sqlbDMSGetOpenInfo exit

34813 13.644489000 | | | sqloReadV entry [eduid 26 eduname db2pfchr]

34816 13.644489000 | | | | sqloReadVLow entry [eduid 26 eduname db2pfchr]

37638 13.645357000 | | | | sqloReadVLow exit

37642 13.645359000 | | | sqloReadV exit

13

• Time spent per EDU
• Look for “lags” in the time sequence

Trace ID

Time

Code flow

For example:

34816 13.644489000 | | | | sqloReadVLow entry [eduid 26 eduname db2pfchr]

37638 13.645357000 | | | | sqloReadVLow exit

This routine performs a disk read of one page. The difference between the two entries is 0.000868, meaning reading one page took 0.000868 s.

13

Trace: Performance Trace
$ db2trc on -perfcount -t

<…run your scenario…>

$ db2trc dmp trace.dmp

$ db2trc off

$ db2trc perffmt trace.dmp trace.perfmt

$ sort -k2nr trace.perfmt > trace.perfmt.sorted

1 15.725198000 sqlrr_execimmd

1 15.725046000 sqlrr_execute_immed

1 15.702721000 sqlriSectInvoke

524288 11.086911000 sqlrinsr

524288 10.367470000 sqldRowInsert

262145 8.946307000 sqlriisr

14

• A great way to “profile” what is happening in Db2

Number of

executions

Time spent

(s)

Routine

names

14

Trace: analyzetrace (COMING SOON ™)

$ db2trc on -f trace.dmp -t

$ db2 connect to sample

$ db2trc off

$ db2trc flw -t trace.dmp trace.flw

$./analyzetrace -f trace.flw

Output will be sorted by total time in descending order

Slurping file trace.flw ..

Slurping 223909 lines in trace.flw

Sorting .. please wait

Please check perftrace.out

Program Finished

15

• Previous example shows a “per-instance” performance profile
• What if you want to see “per-EDU” performance data?

• Credit to Rajib Sarkar

• The tool uses a formatted Db2 trace file, either FLW or FMT, as the input

• The formatted Db2 trace file must contain timestamps (db2trc should have been invoked using the –t option)

• Note that “analyzetrace” is currently not shipped, we are working on shipping this soon

• Once done, the tool will be located in the usual ~/sqllib/pd directory

• In the meantime, contact me for the current version

15

Trace: analyzetrace Example
Pid Lvl FuncName TTime(ms) HTime LTime AvgTime NCalls ERHTime

---------- --- ------------------------- -------- -------- -------- -------- ------ -------

21160(Tid = 139923394914048, Node = 0)

7 sqljcReceive 2194.898 1138.186 1056.712 1097.449 2 222718

7 sqljsParse 851.295 851.295 851.295 851.295 1 24479

8 sqljsParseConnect 851.263 851.263 851.263 851.263 1 24509

10 sqljsConnectAttach 851.250 851.250 851.250 851.250 1 24513

11 sqleUCagentConnect 851.211 851.211 851.211 851.211 1 24516

12 sqleUCengnInit 851.183 851.183 851.183 851.183 1 24541

13 sqeApplication::AppLocalStart 851.178 851.178 851.178 851.178 1 24542

15 sqeApplication::AppStartUsing 850.534 850.534 850.534 850.534 1 25039

17 sqeLocalDatabase::FirstConnect 490.520 490.520 490.520 490.520 1 25623

18 sqledint 446.490 446.490 446.490 446.490 1 30916

19 sqlbinit 243.776 243.776 243.776 243.776 1 40509

19 sqlpinit 186.967 186.967 186.967 186.967 1 31061

20 sqlpgint 154.109 154.109 154.109 154.109 1 37125

20 sqlbInitBufferPool 91.588 22.036 14.973 18.318 5 44170

21 sqlbSetupClnrGroupForBP 86.403 21.557 14.391 17.281 5 44287

16

• Profile of the CONNECT thread

• All times in miliseconds

• Pid > Process id

• Lvl > Depth at which function found (counting the pipe signs in the flw output)

• FuncName > Function Name

• TTime > Total Time spent in the function

• HTime > Highest Time spent by 1 call in this function

• LTime > Least Time spent by 1 call in this function

• AvgTime > Avg. Time spent by 1 call in this function

• ERecnumHtTime > Entry Record number for the highest time call to the function

• We can clearly see how much time it took to initialize individual Db2 comments: sqlbinit, sqleinit, sqlpinit, …

• How many buffer pools are there? How long did it take to allocate them?

16

Trace: Print Call Stack
$ db2trc print –stack 314032 trace.flw

pid = 14925 tid = 46912874998080 node = 0

308986 sqleProcessSCoordRequest entry [eduid 37 eduname db2agent]

310069 | sqlpParallelRecovery entry [eduid 37 eduname db2agent]

314023 | | sqlpPRecReadLog data [probe 1250]

314027 | | | sqlprProcDPSrec data [probe 430]

314028 | | | | sqlpRecDbRedo entry [eduid 37 eduname db2agent]

314030 | | | | | sqldmrdo data [probe 0]

314031 | | | | | | sqldomRedo entry [eduid 37 eduname db2agent]

314032 | | | | | | | sqldRedoFastTruncTable entry [eduid 37 eduname db2agent]

17

• If you only consider the initial entry for each routine in a Db2
trace flow file, you will get a “call stack” – an ordered sequence
of internal Db2 calls.

17

Trace: Suspend Db2
$ db2trc on -debug "DB2.SQLB.sqlbinit.entry" -suspend

$ db2 connect to sample

<…hangs…>

db2diag.log

2018-10-15-12.50.06.307166-240 I135142E2673 LEVEL: Severe

PID : 10253 TID : 140494935942912 PROC : db2sysc 0

INSTANCE: db2inst2 NODE : 000 DB : SAMPLE

APPHDL : 0-79 APPID: *LOCAL.db2inst2.181015165006

AUTHID : DB2INST2 HOSTNAME: demobox

EDUID : 18 EDUNAME: db2agent (SAMPLE) 0

FUNCTION: DB2 UDB, trace services, crash_trace, probe:10

MESSAGE : MARKER=16397=PD_DB2_TRC_CRASH_SUSPEND "Trc. debug: Suspending"

DATA #1 : Function, 4 bytes

DB2 UDB, buffer pool services, sqlbinit

18

• Suspend Db2 during an event of your choice
• Can also be used to crash Db2 (great for recovery tests ☺)• The -debug flag is followed by a place identifier; use db2trc on –u to display help

• Alternatives to –suspend:

• -crash – crashes the EDU

• -sleep <n> – pauses the EDU for <n> seconds

• Use db2trc chg -resume -debug "DB2.SQLB.sqlbinit.exit" –suspend to move the suspension point to the exit of the same routine

• Use db2trc off to disable the suspend

18

Trace: Call-Out Script

• Situation: You want to collect information when a specific Db2 routine
is executed.

• Solution:
• db2trc –debug –db2cos

• This action triggers the db2cos script located in ~/sqllib/bin

• If you want to customize the script:
1. Copy ~/sqllib/bin/db2cos to ~/sqllib/adm
2. Locate the “DB2_TRC” section
3. Add your commands

19

• An example of how to customize the script:

"DB2_TRC")

echo "Trace Point Caught" >> $logfile

db2trc dump /tmp/trc.dmp >> $logfile

db2trc off >> $logfile

echo "Instance “ $instance >> $logfile

echo "Database: " $database >> $logfile

echo "Partition Number:" $dbpart >> $logfile

echo "PID: " $pid >> $logfile

echo "TID: " $tid >> $logfile

<…add your own commands…>

19

Trace: Call-Out Script Example
$ db2trc on -debug "DB2.SQLB.sqlbinit.entry" -suspend -db2cos

$ db2 connect to sample

<…hangs…>

db2diag.log

2018-10-15-14.20.53.747332-240 I6776E379 LEVEL: Event

PID : 24321 TID : 140385756596000 PROC : db2vend (PD Vendor Process - 18)

INSTANCE: db2inst2 NODE : 000

HOSTNAME: demobox

FUNCTION: DB2 UDB, trace services, pdInvokeCalloutScriptDirect, probe:10

START : Invoking /home/db2inst2/sqllib/adm/db2cos from buffer pool services sqlbinit

24178.18.000.cos.txt

Trace Point Caught

Instance db2inst2

Database: SAMPLE

Partition Number: 000

PID: 24178

TID: 3179276032

20

You can conclude this technique by dumping the trace leading to this point, e.g,:

• change your directory to $HOME/sqllib/db2dump/

• db2trc dmp trace.dmp (this will dump the trace buffer into a file)

• db2trc off (this will stop tracing and DB2 will resume)

• db2trc fmt trace.dmp trace.fmt

• db2trc flw trace.dmp trace.flw

• db2support . -d <dbname> -c -g -s

20

db2pdcfg: Execute Call-Out Script

•db2pdcfg can also be used to execute the call-out script
• db2pdcfg -catch diagstr=“Message to capture”

• The string must be located in the “MESSAGE” section of the diagnostic log entry
• Use of a substring is acceptable

21

db2trc -debug -db2cos db2pdcfg -catch diagstr

Fires off when a routine/probe is executed Fires off when a diagnostic message is encountered

Use when a diagnostic message is not present Use when unsure about the routine name

Use when one routine produces multiple messages Use when multiple routines produce the same message

21

db2pdcfg: Call-Out Example (1)

22

For example, let us capture the following event which happens during
the database activation time (e.g. during the first connection):

2018-10-02-16.02.57.310281-240 I3547E521 LEVEL: Event

PID : 20436 TID : 140319605647104 PROC : db2sysc 0

INSTANCE: db2inst2 NODE : 000 DB : SAMPLE

APPHDL : 0-18 APPID: *LOCAL.db2inst2.181002200256

AUTHID : DB2INST2 HOSTNAME: demobox

EDUID : 18 EDUNAME: db2agent (SAMPLE) 0

FUNCTION: DB2 UDB, catcache support, sqlrlc_catcache_init, probe:260

MESSAGE : Catalog cache size:

DATA #1 : unsigned integer, 8 bytes

851968

• Let us pick “Catalog cache size” without the trailing colon

22

db2pdcfg: Call-Out Example (2)

23

$ db2pdcfg -catch diagstr="Catalog cache size"

<...skipping...>

Action: Error code catch flag enabled

Action: Execute /home/db2inst2/sqllib/bin/db2cos callout script

Action: Produce stack trace in db2diag.log

$ db2 connect to sample

db2diag.log

FUNCTION: DB2 UDB, RAS/PD component, pdLogInternal, probe:999

DATA #1 : <preformatted>

Caught String Catalog cache size. Dumping stack trace

2018-10-02-16.02.57.378838-240 I6624E380 LEVEL: Event

PID : 20633 TID : 140296236762912 PROC : db2vend (PD Vendor Process - 18)

INSTANCE: db2inst2 NODE : 000

HOSTNAME: demobox

FUNCTION: DB2 UDB, trace services, pdInvokeCalloutScriptDirect, probe:10

START : Invoking /home/db2inst2/sqllib/bin/db2cos from RAS/PD component pdLogInternal

• When satisfied, use “db2pdcfg –catch –clear” to clear the catch flag settings

23

One Minute Lock Problem Determination

• Situation: A connection to the database hangs or the database is
slower than usual, and you want to investigate possible lock
contentions

• Solution:
• db2pd –db <dbname> –locks –wlocks

• This command will give you:
1. Information on all locks currently used by the database (including those that

nobody is waiting for)
2. Holder/Waiter info for transaction locks being waited on

24

24

Lock Example (1)
SESSION 1

$ db2 connect to sample

$ db2trc on -debug "DB2.SQLB.sqlbDMSMapAndRead.entry" -suspend

Trace is turned on

$ db2 "select count(*) from staff"

<...hangs...>

SESSION 2

$ db2 connect to sample

$ db2 list tables

<...hangs...>

25

• We are using db2trc to simulate a hang of two independent EDUs

25

Lock Example (2)
$ db2pd -db sample -locks -wlocks

Database Member 1001 -- Database SAMPLE -- Active -- Up 0 days 00:28:21 -- Date 2018-10-22-12.05.40.964806

Locks:

Address TranHdl Lockname Type Mode Sts Owner Dur HoldCount Att ReleaseFlg

0x00007F66DC2F2E00 13 01000000010000000100C07ED6 VarLock ..S G 13 1 0 0x00000000 0x40000000

0x00007F66DC2F5F00 12 434F4E544F4B4E3128DD6306C1 PlanLock ..S G 3 1 0 0x00000000 0x40000000

0x00007F66DC2E7980 3 41414141416641647CF81EA4C1 PlanLock ..S G 3 1 0 0x00000000 0x40000000

0x00007F66DC2F5E80 12 41414141416641647CF81EA4C1 PlanLock ..S G 3 1 0 0x00000000 0x40000000

0x00007F66DC2F2D00 13 5359534C564C3031DDECEF28C1 PlanLock ..S G 13 1 0 0x00000000 0x40000000

0x00007F66DC2E7B80 3 E08172E4667F000000000001C1 PlanLock ..X G 3 1 0 0x00000000 0x40000000

0x00007F66DC2F5E00 12 E08172E4667F000000000001C1 PlanLock ..X W 3 0 0 0x00000000 0x00000000

0x00007F66DC2F2F00 13 05000400000000000000000054 TableLock .IS G 13 1 1 0x00002000 0x40000000

0x00007F66DC2E7D80 3 00000D00000000000000000054 TableLock .IS G 3 1 0 0x00002000 0x40000000

0x00007F66DC2F1280 14 00000D00000000000000000054 TableLock .IN G 14 1 0 0x00003000 0x40000000

0x00007F66DC2F2A80 7 00000700000000000000000054 TableLock .IX G 7 1 0 0x00202000 0x40000000

Database Member 1001 -- Database SAMPLE -- Active -- Up 0 days 00:28:21 -- Date 2018-10-22-12.05.40.973305

Locks being waited on :

AppHandl [nod-index] TranHdl Lockname Type Mode Conv Sts CoorEDU AppName

8 [000-00008] 3 E08172E4667F000000000001C1 PlanLock ..X G 18 db2bp

32 [000-00032] 12 E08172E4667F000000000001C1 PlanLock ..X W 46 db2bp

26

• In the “-locks” output, look for “W” (waiting) and the corresponding “G” (granted)

• Or, simply have a look at the “-wlocks” output which will sort this out for you

• In this case, application handle 8 is holding a plan lock in X, and application handle 32 is waiting for this lock

• You can use MON_FORMAT_LOCK_NAME to obtain extended information about the lock:

$ db2 "SELECT SUBSTR(NAME,1,20) AS NAME, SUBSTR(VALUE,1,50) AS VALUE FROM TABLE(

MON_FORMAT_LOCK_NAME('E08172E4667F000000000001C1')) as LOCK"

NAME VALUE

-------------------- --

LOCK_OBJECT_TYPE PLAN

PACKAGE_TOKEN ŕrä

INTERNAL HashPkgID:01000000,LoadingBit:1

3 record(s) selected.

26

One Minute Latch Problem Determination

• Situation: Similar to the locking case, except there are no lock holders
or waiters present

• Solution:
1. db2pd –latches

• Provides a quick overview of latch holders/waiters
• Use when you do not care about the root cause

2. db2pd –stack all followed by analyzestack –l,OR
db2fodc –hang basic followed by analyzestack –l

• More details, perhaps harder to read initially
• Often sufficient for root cause analysis

27

27

Latch Scenario
SESSION 1

$ db2 connect to sample

$ db2trc on -debug "DB2.SQLB.sqlbPoolTblNewPool.entry" -suspend

Trace is turned on

$ db2 create tablespace ts1

<...hangs...>

SESSION 2

$ db2 connect to sample

$ db2 "list tablespaces"

<...hangs...>

28

28

db2pd –latches Example
$ db2pd -latches

Database Member 0 -- Active -- Up 0 days 00:22:36 -- Date 2018-10-23-18.15.09.261949

Latches:

Address Holder Waiter Filename LOC LatchType HoldCount

0x0000000201FD0470 14 0 Unknown 1391 SQLO_LT_sqeWLDispatcher__m_tunerLatch 1

0x00007F890472B6F0 18 45 Unknown 2941 SQLO_LT_SQLB_PTBL__pool_table_latch 1

0x0000000202AA7C88 18 0 Unknown 526 SQLO_LT_preventSuspendIOLotch 1

29

• Look for lines with non-zero values in the “Waiter” column
• In this case, there is a contention on a “pool table latch”

• Holder: EDU 18
• Waiter: EDU 45

29

analyzestack Example
$ db2pd -stack all

Attempting to produce all stack traces for database partition.

See current DIAGPATH for stack trace file.

$ ~/sqllib/pd/analyzestack -i ~/sqllib/db2dump -l

**** 1 LATCHWAIT DETECTED ****

Please check the following files:

LatchAnalysis.out

******** LATCHWAIT DETECTED (#1) ***********

<<<< Holder Information (Address = 0x7f890472b6f0) >>>>

18 (/home/db2inst2/sqllib/db2dump/5274.18.000.stack.txt)

Agent Type: db2agent (SAMPLE)

<<<< Waiter Information (Address = 0x7f890472b6f0) >>>>

TOTAL WAITERS >> 1

45 (/home/db2inst2/sqllib/db2dump/5274.45.000.stack.txt)

Agent Type: db2agent (SAMPLE)

30

Look for lines containing “LATCHWAIT DETECTED”. In conjunction with the call stack files located in the diagnostic path, “LatchAnalysis.out”
often contains enough information to determine the root cause:

• EDUs involved in the latch wait

• The call stacks of the respective EDUs (sequence of calls leading to the hang)

• Timestamps

• EDU types

30

db2fodc – First Occurrence Data Capture

• Situation: You want to bring the data collection to the next level and
collect the maximum amount of information for a subsequent
problem determination

• Solution:
• db2fodc –hang basic

• Find db2fodc -hang too slow? No problem!
1. Copy ~/sqllib/bin/db2cos_hang to ~/sqllib/adm/db2cos_hang
2. In ~/sqllib/adm/db2cos_hang, search for no_wait="OFF"
3. Change to no_wait="ON"
4. Execute db2fodc as usual

31

Under the hood, db2fodc executes a call-out script, in this case db2cos_hang. The script is located under “~/sqllib/bin”, and cannot be modified
by the instance owner. The solution is to copy the script to “~/sqllib/adm”. The copy in “adm” takes precedence over the one in “bin”. Once
copied, the script in “adm” can be modified.

Most of the time consumed by db2cos_hang is spent by waiting in between data collection iterations. This is by design. Separating the data by
a time offset gives an analyst a more accurate picture of the situation. However, when in a hurry, the wait times can be eliminated completely
by changing the “no_wait” option of the script.

31

db2fodc –hang Example
$ db2fodc -hang basic

"db2fodc": List of active databases: "SAMPLE"

Starting data collection for hang problem determination...

Tue Oct 23 19:03:40 EDT 2018

...

Collecting OS Configuration info (started at 07:03:40 PM)

Should complete in less than one minute

Finished at 07:03:41 PM

...

Collecting DB2 CONFIG info (started at 07:04:16 PM)

Estimated time to completion is 5 minutes (Ctrl-C to interrupt)

Finished at 07:04:17 PM

Output directory is /home/db2inst2/sqllib/db2dump/FODC_Hang_2018-10-23-19.03.40.064993_0000

Open db2fodc_hang.log in that directory for details of collected data

32

• This run is done with no_wait="ON"

• The output data will be located in an FODC directory in the diagnostic path

• You can run the usual tools, such as analyzestack, on the output data in the FODC directory

32

What’s in My Table Space?

• Situation: You want to see how individual objects in your table space
are laid out, and/or which object is holding the high water mark.

• Solution:
• db2dart <dbname> /DHWM /TSI <tablespaceID>

• Objects in a table space may be placed “all over” the table space

• There may be “holes”, i.e. free space, anywhere in the table space

• The documentation claims that “Practically speaking, it's virtually
impossible to determine the high water mark yourself”… we beg to
differ! ☺

33

33

db2dart /DHWM Example

34

$ db2dart test /dhwm

High water mark: 538 pages, 269 extents (extents #0 - 268)

[0000] 65534 0x0e [0001] 65534 0x0e [0002] 65535 0x00 [0003] == EMPTY ==

[0004] == EMPTY == [0005] == EMPTY == [0006] == EMPTY == [0007] == EMPTY ==

<...skipping...>

[0132] == EMPTY == [0133] == EMPTY == [0134] == EMPTY == [0135] == EMPTY ==

[0136] 5 0x40* [0137] 5 0x00* [0138] 5 0x43* [0139] 5 0x03*

[0140] 5 0x44* [0141] 5 0x04* [0142] 5 0x00 [0143] 5 0x00

[0144] 5 0x00 [0145] 5 0x00 [0146] 5 0x00 [0147] 5 0x00

<...skipping...>

[0268] 5 0x00

Object holding high water mark:

Object ID: 5

Type: Table Data Extent

Extent Number

Object ID

Object Type

34

Bed Time: DB2SLEEP

• Situation: You are dealing with an outage (e.g. trap, data corruption,
forced database shutdown), and you wish Db2 would freeze all
processing instead of shutting down so you can still collect additional
runtime information.

• Solution:
• db2set DB2SLEEP=ON

• Actions requiring Db2 engine processing (e.g. CONNECT, MON_GET*)
will not be possible, but you will be able to use db2pd, db2dart,…

• To resume the shutdown, use db2pcfg -wakeupinstance

35

35

DB2SLEEP: Example
$ db2set DB2SLEEP=ON

$ db2stop;db2start

$ db2pd -edus

Database Member 0 -- Active -- Up 0 days 00:00:46 -- Date 2018-10-23-19.43.01.861562

List of all EDUs for database member 0

db2sysc PID: 17845

$ kill -SEGV 17845

$ kill -SEGV 17845

$ ls -d ~/sqllib/db2dump/FODC*

/home/db2inst2/sqllib/db2dump/FODC_Trap_2018-10-23-19.43.59.963061_0000

$ db2pd -edus

Database Member 0 -- Active -- Up 0 days 00:02:23 -- Date 2018-10-23-19.44.38.160836

List of all EDUs for database member 0

db2sysc PID: 17845

36

• In order to kill Db2, we are sending the SIGSEGV (Signal #11) to the db2sysc PID

• The signal needs to be sent twice because Db2 has its own signal handlers:

• When Db2 receives a signal, Db2’s own signal handlers first produce Db2 diagnostic data (e.g. FODC_Trap)

• Then Db2 resets the signal handler to the OS default, and re-executes the same failing instruction, usually causing the process
shutdown

• We can see that when DB2SLEEP is on, the db2sysc PID is still active

• At this point we can run additional non-engine (db2pd, db2dart, …) commands

36

BACKUP SLIDES

37

383838

Common Db2 Component Prefixes
sql, squ Backup and Restore

sqb Buffer Pool Services: buffer pools, data storage management, table spaces, containers, I/O,
prefetching, page cleaning

sqf Configuration - database, database manager, configuration settings

sqd, sqdx, sqdl Data Management Services: tables, records, long field and lob columns, REORG TABLE utility

sqp, sqdz Data Protection Services: logging, crash recovery, rollforward

hdr High Availability Disaster Recovery (HADR)

sqx Index Manager

sqrl Catalog Cache and Catalog Services

sqng Code Generation (SQL Compiler)

squ, sqi, squs, sqs Load, Sort, Import, Export

sqpl Locking

sqno, sqnx, sqdes Optimizer

sqo, sqz, oss Operating System Services: AIX, Linux, Solaris, HP-UX platforms
38Note the symbolic names use add an extra ‘l’. For example, sqlbAlterPoolAct from the previous example has the prefix of ‘sqlb’, which translates

to component ‘sqb’ – buffer pool services.

393939

Hangs: Important Routines

• The following routines serve as the first eyecatcher. An EDU executing
these routines is always waiting for a latch, and this EDU should be
closely examined:

• getConflictComplex

• sqloltch

• sqloltch_notrack

• sqloSpinLockConflict

39

404040

Hangs: Less Important Routines

• The presence of the following routines usually (but not always ☺) indicates that the
owning EDU is legitimately idle (e.g. sleeping, waiting for work), and the problem is
elsewhere:

• msgrcv
• ossSleep
• semtimedop
• sqleIntrptWait
• sqloCSemP
• sqloWaitEDUWaitPost
• sqlorest
• sqlorqueInternal

• Also, if an application state is “UOW Waiting”, this application is NOT executing inside the
Db2 kernel. Instead, the application is waiting for a remote request (usually outside of
Db2) => not a Db2 issue.

40

Trap Signals/Exceptions

UNIX/Linux Signal ID Description

SIGILL(4), SIGFPE(8), SIGTRAP(5), SIGBUS(10,

Linux: 7), SIGSEGV(11), SIGKILL(9)

Instance trap. Bad programming, HW errors,

invalid memory access, stack and heap collisions,

problems with vendor libraries, OS problems. The

instance shuts down.

41414141414141

41

Windows Exception Description

ACCESS_VIOLATION (0xC0000005)

ILLEGAL_INSTRUCTION (0xC000001D)

INTEGER_DIVIDE_BY_ZERO (0xC0000094)

PRIVILEGED_INSTRUCTION (0xC0000096)

STACK_OVERFLOW (0xC00000FD)

Instance trap. Bad programming, HW errors,

invalid memory access, stack overflows, problems

with vendor libraries, OS problems. The instance

shuts down.

•On UNIX, a signal can be sent to a Db2 process by issuing a “kill - <signal #>. Signals are
defined in the “signals.h” header file.

•For example, on AIX 5.3, the signal.h header file is located in /usr/include.sys/signal.h

•An extract of the signal.h header file is as follows:

▪ #define SIGHUP 1 /* hangup, generated when terminal disconnects */

▪ #define SIGINT 2 /* interrupt, generated from terminal special char */

▪ #define SIGQUIT 3 /* (*) quit, generated from terminal special char */

▪ #define SIGILL 4 /* (*) illegal instruction (not reset when caught)*/

▪ #define SIGTRAP 5 /* (*) trace trap (not reset when caught) */

▪ #define SIGABRT 6 /* (*) abort process */

▪ #define SIGEMT 7 /* EMT intruction */

▪ #define SIGFPE 8 /* (*) floating point exception */

▪ #define SIGKILL 9 /* kill (cannot be caught or ignored) */

▪ #define SIGBUS 10 /* (*) bus error (specification exception) */

▪ ….

▪ ….

• To send an abort signal (SIGABRT) to a process, issue a “kill -6 <pid>”.

• On Windows, use db2pd –stack to send “signals” to db2 processes/threads.

• WARNING: DO NOT randomly issue signals to a Db2 process unless directed to by
Db2 Service. Sending inappropriate signals can lead to database problems.

Abort Signals/Exceptions

UNIX/Linux Signal IDs Description

most UNIX’s: SIGABRT(6)

HP-UX: SIGIOT(6)

Instance panic. Self induced by Db2 due to unrecoverable

problems. Typically associated with data (disk) corruption.

The instance shuts down.

42424242424242

42

Windows Exception Description

User Defined Exception (0xE0000002) Diagnostic info signal. Dumps diagnostic info for the failing

EDU. The instance shuts down during subsequent

processing.

•On UNIX, a signal can be sent to a Db2 process by issuing a “kill - <signal #>. Signals are
defined in the “signals.h” header file.

•For example, on AIX 5.3, the signal.h header file is located in /usr/include.sys/signal.h

•An extract of the signal.h header file is as follows:

▪ #define SIGHUP 1 /* hangup, generated when terminal disconnects */

▪ #define SIGINT 2 /* interrupt, generated from terminal special char */

▪ #define SIGQUIT 3 /* (*) quit, generated from terminal special char */

▪ #define SIGILL 4 /* (*) illegal instruction (not reset when caught)*/

▪ #define SIGTRAP 5 /* (*) trace trap (not reset when caught) */

▪ #define SIGABRT 6 /* (*) abort process */

▪ #define SIGEMT 7 /* EMT intruction */

▪ #define SIGFPE 8 /* (*) floating point exception */

▪ #define SIGKILL 9 /* kill (cannot be caught or ignored) */

▪ #define SIGBUS 10 /* (*) bus error (specification exception) */

▪ ….

▪ ….

• To send an abort signal (SIGABRT) to a process, issue a “kill -6 <pid>”.

• On Windows, use db2pd –stack to send “signals” to db2 processes/threads.

• WARNING: DO NOT randomly issue signals to a Db2 process unless directed to by
Db2 Service. Sending inappropriate signals can lead to database problems.

Session code:

Please fill out your session

evaluation before leaving!

Pavel Sustr
IBM Toronto Lab
psustr@ca.ibm.com

@pavel_sustr

C6

43

Please fill out your session

evaluation before leaving!

43

